Unified Engineering Problem Set
Week 7 Spring, 2008

Lectures: M11, M12
Units: M4.6

M7.1 (15 points) An aluminum rod has a solid circular cross-section with a $20-\mathrm{cm}$ diameter and is 3 meters in length. The rod is clamped to a solid wall at one end, and is subjected to a distributed negative torque of linearly increasing intensity: from 0 at the wall to $100 \mathrm{~N}-\mathrm{m} / \mathrm{m}$ at the tip. There also is a concentrated positive torque of $200 \mathrm{~N}-\mathrm{m}$ at the midpoint of the rod. The configuration is shown below. The modulus of aluminum is 67 GPa and the Poisson's ratio is 0.3 .

Cross-Section

(a) Determine the torque distribution in the rod structural configuration and sketch this as a function of x_{1}.
(b) Determine the twist at the tip of the rod.
(c) Determine the maximum shear stress in the rod and its location.
(d) If the rod were a hollow tube with the same outer radius and a wall with a thickness of 20 mm , how would these answers change?

